
1 P&F, the basic idea

• Sentences are sensitive to context-intervals

(1) Mary kissed John
λi . ∃e . kissm j e ∧ τ e ⊆ i

• Temporal prepositional phrases (tPPs) are also context-iterval sensitive

(2) Mary kissed John during every meeting
λi . ∀e .meet e ∧ τ e ⊆ i ⇒ ∃e ′ . kissm j e ′ ∧ τ e ′ ⊆ τ e

• And the interval dependencies in these tPPs tend to cascade, according to
the order in which they scope

(3) Mary kissed John during every meeting one Monday
λi . ∃e .mond e ∧ τ e ⊆ i ∧ ∀e ′ .meet e ′ ∧ τ e ′ ⊆ τ e ⇒ ∃e ′′ . kissm j e ′′ ∧
τ e ′′ ⊆ τ e ′

• Sentences and nominals both expose an event variable that quanti�ers (and
closure operators) can bind:

– some meeting ∼ [(at some point) Mary arrived]
– the meeting ∼ before [(the time that) Mary arrived]
– every meeting ∼ when [(every time that) Mary arrived]

Determined sentences and DPs both denote generalized quanti�ers over in-
tervals (this is how they’re going to pass interval-restrictions down):

– nsome meetingo ≈ λPi . ∃e .meet e ∧ τ e ⊆ i ∧ P (τ e)
– nMary arrivedo ≈ λPi . ∃e . arrive e ∧ τ e ⊆ i ∧ P (τ e)

2 P&F, some details

2.1 P&F combinators

• Pseudoapplication 1:
Q ? f = λPi .Q (λx . f x i) P

• Pseudoapplication 2:
ψ • ϕ = ψ ◦ ϕ

• Finalization:
m↓ =m (λi . T)

2.2 P&F Lexicon

Phrase Type Denotation

meeting eit λx0i .meetx0 ∧ τ x0 ⊆ i
Monday eit λx0i .mondayx0 ∧ τ x0 ⊆ i
every (et)(et)t λQP . ∀x .Q x ⇒ P x
a/one (et)(et)t λQP . ∃x .Q x ∧ P x
during/on ((et)it)(et)it λPPi . P (λy . P (τ y)) i
the (et)(et)t λQP . ιx :Q x . P x
Mary called John eit λx0i . call j mx0 ∧ τ x0 ⊆ i

2.3 P&F Examples
na Mondayo = nao? nMondayo

= λPi . nao (λx . nMondayox i) P
= λPi . ∃x0 .mondayx0 ∧ τ x0 ⊆ i ∧ P x0

non a Mondayo = nono na Mondayo
= λPi . ∃x0 .mondx0 ∧ τ x0 ⊆ i ∧ P (τ x0)

nevery meetingo = neveryo? nmeetingo
= λPi . neveryo (λx . nmeetingox i) P
= λPi . ∀x0 .meetx0 ∧ τ x0 ⊆ i ⇒ P x0

nduring every meetingo = nduringo nevery meetingo
= λPi . ∀x0 .meetx0 ∧ τ x0 ⊆ i ⇒ P (τ x0)

2.3.1 Nominal Modi�cation
Before Determination
(4) every [meeting on a Monday]

nmeeting on a Mondayo
= non a Mondayo • nmeetingo
= λx0 . non a Mondayo (λi .meetx0 ∧ τ x0 ⊆ i)
= λx0i . ∃x1 .mondx1 ∧ τ x1 ⊆ i ∧meetx0 ∧ τ x0 ⊆ τ x1

nevery meeting on a Mondayo
= neveryo? nmeeting on a Mondayo
= λPi . ∀x0 . ∃x1 .mondx1 ∧ τ x1 ⊆ i ∧meetx0 ∧ τ x0 ⊆ τ x1 ⇒ P x0

1

After Determination
(5) [one day] [of every week]

nof every weeko = λPi . ∀x0 .weekx0 ∧ τ x0 ⊆ i ⇒ P (τ x0)
none dayo = λPi . ∃x0 . dayx0 ∧ τ x0 ⊆ i ∧ P x0

nof every weeko • none dayo
= λPi . ∀x0 .weekx0 ∧ τ x0 ⊆ i ⇒ ∃x1 . dayx1 ∧ τ x1 ⊆ τ x0 ∧ P x1

2.3.2 Sentential Modi�cation
Before Determination
(6) When[ever [Bill slept on a Monday]]

nBill slepto = λx0i . sleep bx0 ∧ τ x0 ⊆ i

non a Mondayo • nBill slepto
= λx0i . ∃x1 .mondx1 ∧ τ x1 ⊆ i ∧ sleep bx0 ∧ τ x0 ⊆ τ x1

never Bill slept on a Mondayo
= neveryo? nBill slept on a Mondayo
= λPi . ∀x0 . ∃x1 .mondx1 ∧ τ x1 ⊆ i ∧ sleep bx0 ∧ τ x0 ⊆ τ x1 ⇒ P x0

nWhen[ever Bill slept on a Monday]o
= nwhenevero nBill slept on a Mondayo
= λPi . ∀x0 . ∃x1 .mondx1 ∧ τ x1 ⊆ i ∧ sleep bx0 ∧ τ x0 ⊆ τ x1 ⇒ P (τ x0)

After Determination
(7) Mary called John during every meeting
��� nMary called Johno ���nao = nao? nMary called Johno

= λPi . ∃x0 . call j mx0 ∧ τ x0 ⊆ i ∧ P x0

nduring every meetingo • nMary called Johno
= λP . nduring every meetingo (nMary called Johno P)
= λPi . ∀x0 .meetx0 ∧ τ x0 ⊆ i ⇒ ∃x1 . call j mx1 ∧ τ x1 ⊆ τ x0 ∧ P x1

3 But what are those pseudoapplicators?

• (?) is a special-purpose tool designed to smuggle an input interval into the
restrictor of a quanti�er. (•) is a (less) special-purpose tool that e�ectively
passes one constituent in as an argument to another.

• This all feels like a trick to e�ect a little bit of scope and a little bit of bind-
ing, and both of those combinators smell like continuations. In fact, if we
η-expand and �ip the order in which expressions take their scopes and in-
tervals:
ψ • ϕ = ψ ◦ ϕ

= λk .ψ (ϕ k)
= λk .ψ (λi ′ . ϕ k i ′)
= λki .ψ (λi ′ . ϕ k i ′) i
[�ip]
λik .ψ i (λi ′ . ϕ i ′ k)

We get the dynamic composition operator from de Groote 2006, “Towards
a Montagovian account of dynamic semantics”

• Similarly if we �ip the types for the arguments of (?),
Q ? f = λik .Q (λx . f x i)k

= λi .Q (λx . f x i)
we get Greg’s Forward Permutation Composition combinator, BQ(Cf), oth-
erwise known as the bind of the continuation monad. In fact, from this
perspective, (•) is the Kliesli compositor (>=>) to ?.

4 P&F-dG

4.1 P&F-dG combinators

• Q ? f = λik .Q (λx . f x i)k

• ψ • ϕ = λik .ψ i (λi ′ . ϕ i ′ k)

2

4.2 P&F-dG Lexicon

Phrase Type Denotation

during every meeting i(it)t λik . ∀x0 .meetx0 ∧ τ x0 ⊆ i ⇒ k (τ x0)
on one Monday i(it)t λik . ∃x1 .mondx1 ∧ τ x1 ⊆ i ∧ k (τ x1)
Mary called John eit λx0i . call j mx0 ∧ τ x0 ⊆ i

4.3 P&F-dG Examples

n(a) Mary called Johno = nao? nMary called Johno
= λik . ∃x0 . call j mx0 ∧ τ x0 ⊆ i ∧ k x0

nduring every meetingo • nMary called Johno
= λik . nduring every meetingo i (λi ′ . nMary called Johno i ′ k)
= λik . ∀x0 .meetx0 ∧ τ x0 ⊆ i ⇒ ∃x1 . call j mx1 ∧ τ x1 ⊆ τ x0 ∧ k x1

nOn one Mondayo • nMary called John during every meetingo
= λik . non a Mondayo i (λi ′ . nMary called John during every meetingo i ′ k)
= λik . ∃x2 .mondx2 ∧ τ x2 ⊆ i ∧

∀x0 .meetx0 ∧ τ x0 ⊆ τ x2 ⇒ ∃x1 . call j mx1 ∧ τ x1 ⊆ τ x0 ∧ k x1

• We could derive the other scope by composing the modi�ers in the other
order (same as P&F)

• But what about modi�ers that attach to undetermined things? We’ve lost
the ability to compose (with •) things like [on a Monday] — type i(it)t —
with things like [meeting] — type eit .

5 P&F-K

• Ok, let’s put the arguments back in the original order, and focus on (?)
instead of (•).

• Q ? f = λki .Q (λx . f x i)k . The reason we have to pass i down to the
restrictor f is that things like meeting and arrivem expect it:
nmeetingo = λxi .meetx ∧ τ x ⊆ i . But should they?

• What if instead of passing i directly to the meeting (and every other nomi-
nal/sentence radical), we instead wrapped meeting in some sort of handler
that would take care of the boilerplate temporal situating. Something like:
nmeetingo = λxk . k (meetx).

• Then when we needed to, we could drop in a closure continuation along
the lines of (λ f ij . f j ∧ j ⊆ i) to enforce the contextual restriction. I think
this is what Chris has in mind when he suggests we move from half to full
continuations.

• In that case, what we need to thread down into the restrictor is not a tem-
poral interval, but a continuation that is itself waiting for an input interval.
Then all we have to do with the interval is hand it o� to the quanti�er, which
can then as need be pass it into the continuized restrictor and/or its nuclear
scope.

• In other words, interestingly, we reverse the role that k and i play in (?):

Q ? f = λki .Q (λx . f x k) i
= λk .Q (λx . f x k)

• And now we’re back to the continuation monad bind, but for real this time.
With this psuedoapplicator, we also get all the applicative goodness of the
Barker-Shan towers, so I’m going to switch over.

5.1 P&F-K combinators

• Q ? f = λki .Q (λx . f x k) i
= λk .Q (λx . f x k)

• m↓ =m (λ f i . {j | f j ∧ j ⊆ i})
• L \R = L? (λx . R ? (λ f . η (f x)))

= λk . L (λx . R (λ f . k (f x)))
• L /R = L? (λ f . R ? (λx . η (f x)))

= λk . L (λ f . R (λx . k (f x)))

5.2 P&F-K Lexicon

Phrase Type (T ≡ i{i}) Denotation

John (eT)T λk . k j
slept ((eit)T)T λk . k sleep
meeting ((eit)T)T λk . kmeet
every (eT)(eT)T λcki . {i | ∀x . c x i , ∅ ⇒ ∃j ∈ c x i . k x j , ∅}
a (eT)(eT)T λcki .

⋃ �
k x j

�
j ∈ c x i

	

the (eT)(eT)T λcki . {i | ιx : c x i , ∅ . ∃j ∈ c x i . k x j , ∅}
during/on ((eαα)T)T λk . k (λ_a . a)

3

5.3 P&F-KS Examples

nevery meetingo
= (neveryo \ nmeetingo)↓

=

(neveryo (λx . [])
x

∖ []
meet

)↓
=

(neveryo (λx . [])
meetx

)↓
= neveryo (λxi . {j | meetx j ∧ j ⊆ i})
= λki . {i | ∀x . {j | meetx j ∧ j ⊆ i} , ∅ ⇒ ∃j .meetx j ∧ j ⊆ i ∧ k x j , ∅}
=

λi . {i | ∀x . {j | meetx j ∧ j ⊆ i} , ∅ ⇒ ∃j .meetx j ∧ j ⊆ i ∧ [] j , ∅}
x

nduring every meetingo
= nduringo / nevery meetingo
=

λi . {i | ∀x . {j | meetx j ∧ j ⊆ i} , ∅ ⇒ ∃j .meetx j ∧ j ⊆ i ∧ [] j , ∅}
λa . a

nJohn slept during every meetingo
= (nJohn slepto \ nduring every meetingo)↓

=

(
λi . {i | ∀x . {j | meetx j ∧ j ⊆ i} , ∅ ⇒ ∃j .meetx j ∧ j ⊆ i ∧ [] j , ∅}

sleep j

)↓
= λi . {i | ∀x . {j | meetx j ∧ j ⊆ i} , ∅ ⇒ ∃j .meetx j ∧ j ⊆ i ∧ sleep j j , ∅}

n(the) Mondayo↓
= (ntheo \ nMondayo)↓

=

(ntheo (λx . [])
x

∖ []
mon

)↓
= ntheo (λxi . {j | monx j ∧ j ⊆ i})
=

λi . {i | ιx :monx i , ∅ . ∃j .monx j ∧ j ⊆ i ∧ [] j , ∅}
x

non Mondayo = nono / n(the) Mondayo

=
[]

λea . a

/ λi . {_ | ιx
e :monx e ∧ τ e ⊆ i . [] (τ e) , ∅}

x

=

λi . {_ | ιx
e :monx e ∧ τ e ⊆ i . [] (τ e) , ∅}

λa . a

nOn Monday, John slept during every meetingo
= (non Mondayo / nJohn slept during every meetingo)↓

=
*..
,

λi . {_ | ιx
e :monx e ∧ τ e ⊆ i . [] (τ e) , ∅}

λa . a

/ λi ′ . {_ | ∀x
e ′ .meetx e ′ ∧ τ e ′ ⊆ i ′ ⇒ [] (τ e ′) , ∅}

sleep j

+//
-

↓

=

*....
,

λi . {_ | ιx
e :monx e ∧ τ e ⊆ i . ∀x

e ′ .meetx e ′ ∧ τ e ′ ⊆ τ e ⇒ [] (τ e ′) , ∅}
sleep j

+////
-

↓

= TRUE i� ιx ,e :monx e ∧ τ e ⊆ i∗ . ∀x
′,e ′ .meetx ′ e ′ ∧ τ e ′ ⊆ τ e ⇒ ∃e ′′ . sleep j e ′′ ∧ τ e ′′ ⊆ τ e ′

nJohn slept [during every meeting] [on Monday]o
=

(nJohn slept during every meetingo↑ \ non Mondayo�)�
=

*....
,

[]
λi ′ . {_ | ∀x

e ′ .meetx e ′ ∧ τ e ′ ⊆ i ′ ⇒ [] (τ e ′) , ∅}
sleep j

∖ λi . {_ | ιx
e :monx e ∧ τ e ⊆ i . [] (τ e) , ∅}

[]
λa . a

+////
-

�

=

*.......
,

λi . {_ | ιx
e :monx e ∧ τ e ⊆ i . [] (τ e) , ∅}

λi ′ . {_ | ∀x
e ′ .meetx e ′ ∧ τ e ′ ⊆ i ′ ⇒ [] (τ e ′) , ∅}

sleep j

+///////
-

�

= TRUE i� ιx ,e :monx e ∧ τ e ⊆ i∗ . ∀x
′,e ′ .meetx ′ e ′ ∧ τ e ′ ⊆ τ e ⇒ ∃e ′′ . sleep j e ′′ ∧ τ e ′′ ⊆ τ e ′

4

na Mondayo = (nao \ nMondayo)↓

=

(nao (λx . [])
x

∖ []
mon

)↓
=

(nao (λx . [])
monx

)↓
= nao (λxi . {e | monx e ∧ τ e ⊆ i})

=
λi .

⋃ �[] (τ e) �
e ∈ {e | monx e ∧ τ e ⊆ i}	

x

non a Mondayo = nono / na Mondayo

= *
,

[]
λ_a . a

/
λi .

⋃ �[] (τ e) �
monx e ∧ τ e ⊆ i

	

x
+
-

=
λi .

⋃ �[] (τ e) �
monx e ∧ τ e ⊆ i

	

λa . a

nmeeting on a Mondayo = nmeetingo \ non a Mondayo

=
[]

meet

∖
λi .

⋃ �[] (τ e) �
monx e ∧ τ e ⊆ i

	

λa . a

=
λi .

⋃ �[] (τ e) �
monx e ∧ τ e ⊆ i

	

meet

nevery meeting on a Mondayo
= neveryo \ nmeeting on a Mondayo

= *
,

neveryo (λx ′i . [] i)
x ′

∖
λi .

⋃ �[] (τ e) �
monx e ∧ τ e ⊆ i

	

meet
+
-

↓

= *
,
neveryo (λx ′i .

⋃ �[] (τ e) �
monx e ∧ τ e ⊆ i

)
meetx ′

+
-

↓

= neveryo (λx ′i .
⋃ �{e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e} �

monx e ∧ τ e ⊆ i
)

= neveryo (λx ′i . {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i})

=

λi . {_ | ∀x ′
e ′ . e ′ ∈ {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i}⇒ [] (τ e ′) , ∅}

x ′

nJohn slept during every [meeting on a Monday]o
= (nJohn slepto \ nduring every meeting on a Mondayo)↓

=
*..
,

[]
sleep j

∖ λi . {_ | ∀x ′
e ′ . e ′ ∈ {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i}⇒ [] (τ e ′) , ∅}

λa . a

+//
-

↓

=
*..
,

λi . {_ | ∀x ′
e ′ . e ′ ∈ {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i}⇒ [] (τ e ′) , ∅}

sleep j

+//
-

↓

= TRUE i� ∀x ′,e ′ . e ′ ∈ {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i}⇒ ∃e ′′ . sleep j e ′′ ∧ τ e ′′ ⊆ τ e ′

nJohn skipped every [meeting on a Monday]o
= (nJohno \ nskippedo / nevery meeting on a Mondayo)↓

=
*..
,

[]
j

∖ []
skip

/ λi . {_ | ∀x ′
e ′ . e ′ ∈ {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i}⇒ [] (τ e ′) , ∅}

x ′

+//
-

↓

=
*..
,

λi . {_ | ∀x ′
e ′ . e ′ ∈ {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i}⇒ [] (τ e ′) , ∅}

skip jx ′

+//
-

↓

= TRUE i� ∀x ′,e ′ . e ′ ∈ {e ′ | meetx ′ e ′ ∧ τ e ′ ⊆ τ e ∧monx e ∧ τ e ⊆ i}⇒ ∃e ′′ . skip jx ′ e ′′ ∧ τ e ′′ ⊆ τ e ′

nday of every weeko = ndayo↑ \ nofo↑ / nevery weeko�

=

[]
[]
day

∖ []
[]

λ_a . a

/ λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}

[]
x

=

λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}

[]
day

5

none day of every weeko = noneo↑ \ nday of every weeko

=

[]
nao (λx ′ . [])

x ′

∖ λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}

[]
day

=

λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}(nao (λx ′ . [])

dayx ′

)↓

=

λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}

λi ′ .
⋃ �[] (τ e ′) �

e ′ ∈ {e ′ | dayx ′ e ′ ∧ τ e ′ ⊆ i ′}	

x ′

=

λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}

λi ′ .
⋃ �[] (τ e ′) �

dayx ′ e ′ ∧ τ e ′ ⊆ i ′
	

x ′

nJohn slept (on) one day of every weeko
= (nJohn slepto↑ \ non one day of every weeko)�

=

*.....
,

[]
[]

sleep j

∖ λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}

λi ′ .
⋃ �[] (τ e ′) �

monx ′ e ′ ∧ τ e ′ ⊆ i ′
	

λa . a

+/////
-

�

=

*.....
,

λi . {_ | ∀x
e .weekx e ∧ τ e ⊆ i ⇒ [] (τ e) , ∅}

λi ′ .
⋃ �[] (τ e ′) �

dayx ′ e ′ ∧ τ e ′ ⊆ i ′
	

sleep j

+/////
-

�

= TRUE i� ∀x ,e .weekx e ∧ τ e ⊆ i∗ ⇒ ∃e
′′ ∈ {e ′′ | sleep j e ′′ ∧ τ e ′′ ⊆ τ e ′ ∧ dayx ′ e ′ ∧ τ e ′ ⊆ τ e}

6 Wrapping Up

• What have we gained here?

• Clean separation of lexical content and temporal restrictions. For instance,
‘meeting’ just denotes the relation between meeting entities and meeting

times. Also no events.

• Cascading restrictions are managed by the grammar. Nominals and sen-
tence radicals are the things that get temporally restricted because those
are exactly the places where the grammar needs to lower or reset.

• The scope of quanti�cational modi�ers is now determined by familiar, ro-
bust scope-handling mechanisms, the same mechanisms that determine the
scope of everything else (Barker and Shan 2014). In particular, ‘a Monday’
and ‘on a Monday’ now take scope in the same way.

• This means we can maintain a traditional bracketing for nested DPs, like
[one [day of every week]].

• Conceptual connections between P&F’s interval handling operations and
dynamic semantics: the intervals are a kind of dynamic context, keeping
track of the “current” time under discussion. In the dG versions of the
fragment, restrictors (both nominals and sentences) are a kind of anaphor
(‘meeting then’, ‘Monday then’), whose reference events are determined in
part by the intervals at play when they are evaluated. In the KS versions,
�nalizing introduces anaphoric dependencies.

• New questions: Empirically, these temporal cascades seem to be sensitive
only to scope, not linear order; does factoring out the temporal restriction
help avoid crossover issues? Now that the tPPs are part of the broader scope
ecosystem, how should they interact with non-tPP scope-taking material,
like DPs, negation, adverbs, attitudes, etc.? How the hell to add in other
prepositional relations? That is, how to tie the lowering to the choice of
preposition without reintroducing implicit temporal pronouns?

6

