Split-scope definites

How 'the' can mean two things at once

Dylan Bumford
18 February 2016
New York University

Definite description

Wisdom: 'the NP' refers to the single salient 'NP' in the context【the hat $\rrbracket=x$, where x is the unique relevant hat

> Proposal: Definite determination split into two subprocesses.【the hat $\rrbracket=$ one (\cdots (some hat))

When things intervene, 'the hat' may end up one among many

- Haddock readings
- Relative superlatives
- Possibly other strange readings of quantificational adjectives
- Emerging uniformity in the theory of cardinal modification

Definite description

Wisdom: 'the NP' refers to the single salient 'NP' in the context【the hat】 $=x$, where x is the unique relevant hat

Proposall: Definite determination split into two subprocesses.

$$
\llbracket \text { the hat } \rrbracket=\text { one }(\cdots(\text { some hat }))
$$

When things intervene, 'the hat' may end up one among many

- Haddock readings
- Relative superlatives
- Possibly other strange readings of quantificational adjectives
- Emerging uniformity in the theory of cardinal modification

Definite description

Wisdom: 'the NP' refers to the single salient 'NP' in the context

$$
\llbracket \text { the hat } \rrbracket=x \text {, where } x \text { is the unique relevant hat }
$$

Proposal: Definite determination split into two subprocesses.【the hat】 = one (\cdots (some hat) $)$
When things intervene, 'the hat' may end up one among many

Payoffs:

- Haddock readings
- Relative superlatives
- Possibly other strange readings of quantificational adjectives
- Emerging uniformity in the theory of cardinal modification

Haddock descriptions

(1) the rabbit in the hat

What about H2?

(2) the table with the apple and the banana

Haddock descriptions

(1) the rabbit in the hat

What about H2?
\#The hat is my favorite

(2) the table with the apple and the banana

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite

(2) the table with the apple and the banana

Nothing especially salient about the relevant fruit

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite
(2) the table with the apple and the banana
[Horacek 1995]

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite
(2) the table with the apple and the banana
[Horacek 1995]

Nothing especially salient about the relevant fruit

Haddock descriptions

(1) the rabbit in the hat

What about H 2 ?
cf. \#The hat is my favorite

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite

Constraint Satisfaction Problem

Unique x and y satisfying these simultaneous
constraints
Noncompositional. Worse, circular!

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite

Constraint Satisfaction Problem

x
rabbit x
xin \cdots

Unique x and y satisfying these simultaneous
constraints
Noncompositional. Worse, circular!

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite

Constraint Satisfaction Problem

x
rabbit x
x in \cdots
hat y

Unique x and y satisfying these simultaneous
constraints
Noncompositional. Worse, circular!

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite

Constraint Satisfaction Problem

$x \quad y$
rabbit x
x in y
hat y

Unique x and y satisfying these simultaneous constraints

Noncompositional. Worse, circular!

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite

Constraint Satisfaction Problem

$x \quad y$
rabbit x x in y hat $y$${ }^{2}$

Unique x and y satisfying these simultaneous constraints
Noncompositional. Worse, circular!

Haddock descriptions

(1) the rabbit in the hat

What about H2?
cf. \#The hat is my favorite

Constraint Satisfaction Problem

$x \quad y$
rabbit x
x in y
hat y

Unique x and y satisfying these simultaneous constraints
Noncompositional. Worse, circular!

Relative superlatives

(2) the girl who got the fewest letters
(3) a. *When was there the rabbit in the garden?
b. W/hen ware there the most rabhits in the garden?
the rabbit in the biggest hat

Relative superlatives

(2) the girl who got the fewest letters
[Szabolcsi 1986] ??? ????
(3) a. *When was there the rabbit in the garden?
b. When were there the most rabbits in the garden?
(4) the rabbit in the biggest hat

Relative superlatives

(2) the girl who got the fewest letters
(3) a. *When was there the rabbit in the garden?
b. When were there the most rabbits in the garden?

Relative superlatives

(2) the girl who got the fewest letters
(3) a. *When was there the rabbit in the garden?
b. When were there the most rabbits in the garden?

Relative superlatives

(2) the girl who got the fewest letters
(3) a. *When was there the rabbit in the garden?
b. When were there the most rabbits in the garden?
(4) the rabbit in the biggest hat

Relative superlatives

(2) the girl who got the fewest letters
(3) a. *When was there the rabbit in the garden?
b. When were there the most rabbits in the garden?
(4) the rabbit in the biggest hat

Relative superlatives via constraint satisfaction?

(5) the rabbit in the biggest hat

Relative superlatives via constraint satisfaction?

(5) the rabbit in the biggest hat

x
rabbit x
xin ...
hat y

Relative superlatives via constraint satisfaction?

(5) the rabbit in the biggest hat

x
rabbit x
xin \cdots
hat y

Relative superlatives via constraint satisfaction?

(5) the rabbit in the biggest hat

x
rabbit x
x in \cdots
hat y

Relative superlatives via constraint satisfaction?

(5) the rabbit in the biggest hat

x
rabbit x
x in y
hat y

Relative superlatives via constraint satisfaction?

(5) the rabbit in the biggest hat

$x \quad y$
rabbit x
x in y
hat y

Decomposing definiteness

The basic idea: definiteness is a two-step process

Decomposing definiteness

The basic idea: definiteness is a two-step process

Decomposing definiteness

Dynamic Semantics

The basic ide Denotations are sets of assignments Indefinites introduce nondeterministic referents

Decomposing definiteness

Dynamic Semantics

The basic ide • Denotations are sets of assignments

```
Indefinites introduce nondeterministic referents
```


Decomposing definiteness

Dynamic Semantics

The basic ide - Denotations are sets of assignments

- Indefinites introduce nondeterministic referents

Decomposing definiteness

The basic idea: definiteness is a two-step process

Decomposing definiteness

The basic idea: definiteness is a two-step process

Teasing the pieces apart

(6) the [rabbit in the hat]
(7) the [rabbit in the biggest hat]

Teasing the pieces apart

some some

(6) the [rabbit in the hat]
one one
(7) the [rabbit in the biggest hat]

Teasing the pieces apart

(6) one [some rabbit in [one [some hat]]]

Teasing the pieces apart

some some

(6) the [rabbit in the hat]
one one
(7) the [rabbit in the biggest hat]

Teasing the pieces apart

some: some

(6) one [one [some rabbit in some hat]] one :...... one
(7) the [rabbit in the biggest hat]

Teasing the pieces apart

(6) one [one [some rabbit in some hat]]
(7) the [rabbit in the biggest hat]

Teasing the pieces apart

(6) the [rabbit in the hat]
(7) the [rabbit in the biggest hat]

Teasing the pieces apart

(6) the [rabbit in the hat]

some

some

(7) the [rabbit in the biggest hat]
one
one biggest

Teasing the pieces apart

(6) the [rabbit in the hat]
(7) one [some rabbit in [one biggest [some hat]]]

Teasing the pieces apart

(6) the [rabbit in the hat]

some

some

(7) the [rabbit in the biggest hat]
one
one biggest

Teasing the pieces apart

(6) the [rabbit in the hat]

some: some

(7) one [one biggest [some rabbit in some hat]] one one biggest

Teasing the pieces apart

(6) the [rabbit in the hat]
(7) one [one biggest [some rabbit in some hat]]

Haddock effects: Interleaved definites

$$
\left\{\left.\begin{array}{l}
v \mapsto x \\
u \mapsto y
\end{array} \right\rvert\, \text { hat } x, \text { rab } y, \text { in } x y\right\}
$$

Haddock effects: Interleaved definites

Haddock effects: Interleaved definites

Relative superlatives: Delayed maximality filter

Superlative as filter
Keep only the assignments that are undominated in their choice of v

$$
\mathbf{S}_{v} G:=\left\{g \in G \mid \neg \exists g^{\prime} \in G . g^{\prime} v>g v\right\}
$$

Relative superlatives: Delayed maximality filter

Relative superlatives: Delayed maximality filter

Relative superlatives: Delayed maximality filter

Connections and applications: Quantificational adjectives

Range of quantificational adjectives that ride on the scope of the definite article
(8) John gave Mary the first telescope
a. John was the first to give Mary a telescope
(9) Mary didn't score the only goal [Coppock \& Beaver 2015]
a. Mary wasn't the only one to score a goal
(10) Ann read the same book yesterday and today [Barker 2007]
a. Ann read a book yesterday and a book today; they where the same

Connections and applications: Split numerosity

And more generally, cardinality-testing denotations appear happy to take delayed action
(11) You should talk to at least three professors
a. You should talk to some professors; three at the least
(12) Exactly three boys saw exactly five movies [Brasoveanu 2012]
a. Some boys saw some movies; three and five, to be exact

Zooming out: Multidimensionality in meaning

Plenty of constructions known to contribute two kinds of meaning at once

- Focus

> I gave the book to JOHN

- Conventional Implicature and presupposition

John, a linguist, received a mysterious book

- Anaphora and discourse referent management

A man walked in; he asked John about his book

- Alternative generation

John either liked or hated his book; I can't remember

Scope as multidimensional meaning

- Quantification is a kind of multidimensional effect

every $_{x}$ student

John talked to x

- Definiteness is just like that, but more

one $_{u}$
some $_{u}$
John talked to u

Conclusion

- Definiteness is semantically bipartite

- Mismatches in the execution of the parts accounts for relative readings of definites and superlatives, and possibly other quantificational adjectives
- Encourages a multidimensional view of meaning, in which different subprocesses of a denotation may act at different times on different arguments

Thanks

Thanks!

References I

Barker, Chris. 2007. Parasitic scope. Linguistics and Philosophy 30(4). 407-444.
http://dx.doi.org/10.1007/s10988-007-9021-y.
Brasoveanu, Adrian. 2012. Modified numerals as post-suppositions. Journal of Semantics http://dx.doi.org/10.1093/jos/ffs003.
Bylinina, Lisa, Natalia Ivlieva, Alexander Podobryaev \& Yasutada Sudo. 2014. A non-superlative semantics for ordinals and the syntax of comparison classes. In Proceedings of the 45th meeting of the north east linguistic society (NELS 45), .
Coppock, Elizabeth \& David Beaver. 2015. Definiteness and determinacy. Linguistics and Philosophy 38(5). 377-435. http://dx.doi.org/10.1007/s10988-015-9178-8.
Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Semantics 3(1). 79-122.
Haddock, Nicholas J. 1987. Incremental interpretation and Combinatory Categorial Grammar. In Proceedings of the 10th international joint conference on artificial intelligence, vol. 2, 661-663. Morgan Kaufmann Publishers Inc.
Horacek, Helmut. 1995. More on generating referring expressions. In Proceedings of the fifth European workshop on natural language generation, 43-58. Leiden, The Netherlands.
Szabolcsi, Anna. 1986. Comparative superlatives. In MIT Working Papers in Linguistics 8, 245-265. Cambridge, MA: MIT.

$$
\begin{aligned}
& m / / n:= \begin{cases}m n & \text { if } m:: \alpha \rightarrow \beta, n:: \alpha \\
\lambda k \cdot m(\lambda f \cdot n(\lambda x . k(f / / x))) & \text { otherwise }\end{cases} \\
& m \backslash n:= \begin{cases}n m & \text { if } n:: \alpha \rightarrow \beta, m:: \alpha \\
\lambda k \cdot m(\lambda x \cdot n(\lambda f \cdot k(x \backslash f))) & \text { otherwise }\end{cases} \\
& m \| n:= \begin{cases}\lambda x \cdot m x \wedge n x & \text { if } m:: \alpha \rightarrow \beta, n:: \alpha \rightarrow \beta \\
\lambda k \cdot m(\lambda x \cdot n(\lambda f . k(f \| x))) & \text { otherwise }\end{cases} \\
& \text { Item } \quad \begin{array}{l}
\text { Type } \quad \text { Denotation }
\end{array}
\end{aligned}
$$

rabbit	$e \rightarrow t$	rab
hat	$e \rightarrow t$	hat
in	$e \rightarrow e \rightarrow t$	in
$\boldsymbol{s o m e}_{u}$	$\left(e \rightarrow \mathbb{D}_{t}\right) \rightarrow \mathbb{K}_{e}$	$\lambda c k g . \cup\left\{k x g^{\prime} \mid x \in \mathcal{D}_{e},\left\langle\mathbf{T}, g^{\prime}\right\rangle \in c x g^{u \mapsto x}\right\}$
$\boldsymbol{t h e}_{u}$	$\mathbb{K}_{\left(e \rightarrow \mathbb{D}_{t}\right) \rightarrow \mathbb{K}_{e}}$	$\lambda k g . \mathbf{1}_{u}\left(k\right.$ some $\left._{u}\right) g$
$\mathbf{1}_{u}$	\mathbb{F}_{α}	$\lambda m g . \begin{cases}G & \text { if }\left\|G_{v}\right\|=1, \text { where } G=m g \\ \# & \text { otherwise }\end{cases}$

【the rabbit in the hat $\rrbracket=$

$$
\begin{aligned}
& \left(\frac{\frac{\mathbf{1}_{u}[]}{\boldsymbol{\operatorname { s o m e }}_{u}(\lambda x .[])}}{x} \|\left(\frac{[]}{\frac{[]}{\mathrm{rab}}}\left\|\frac{\frac{[]}{[]}}{\frac{\mathrm{in}}{}}\right\|\left(\frac{\mathbf{1}_{v}[]}{\frac{\boldsymbol{\operatorname { s o m e }}_{v}(\lambda y \cdot[])}{y}} \| \frac{[]}{\frac{[]}{\mathrm{hat}}}\right)^{\mathbb{I}}\right)\right)^{\mathbb{I} \|} \leadsto \\
& \left(\frac{\mathbf{1}_{u}[]}{\operatorname{some}_{u}(\lambda x .[])} x_{x}^{x} \|\left(\frac{[]}{\frac{[]}{\mathrm{rab}}} \|\right.\right. \\
& \left.\left.\frac{[]}{\text { in }} \| \frac{\mathbf{1}_{v}[]}{\lambda g \cdot \cup\left\{[] g^{v \mapsto y} \mid \text { hat } y\right\}}\right)\right)^{\sqrt{\pi} \|} \leadsto \\
& \left.\left(\frac{\mathbf{1}_{u}\left(\mathbf{1}_{v}[]\right)}{\boldsymbol{\operatorname { s o m e }}_{u}\left(\lambda x g \cdot \cup\left\{[] g^{v \mapsto y} \mid \text { hat } y\right\}\right)}\right)^{\operatorname{rab} x \wedge \operatorname{in} y x}\right)^{\mathbb{J} \|} \leadsto\left(\frac{\mathbf{1}_{u}\left(\mathbf{1}_{v}[]\right)}{\lambda g \cdot \bigcup\left\{[] g^{u \mapsto x} \mid \text { hat } y, \text { rab } x, \text { in } y x\right\}}\right)^{\|} \\
& \left.\leadsto\left(\mathbf{1}_{u}\left(\mathbf{1}_{v}\left(\lambda g \cdot\left\{\left\langle x, g^{\substack{u \mapsto x \\
\forall y}}\right\rangle\right) \text { hat } y, \text { rab } x, \text { in } y x\right\}\right)\right)\right)^{\star} \\
& \leadsto \frac{\lambda g \cdot[] g^{v \mapsto y} y}{x}, \text { where } x=\iota x \text { : hat. } \exists y \cdot \operatorname{rab} y \wedge \operatorname{in} x y \text {, } \\
& y=\imath y: \text { rab. in } x y
\end{aligned}
$$

